
MINI-COMPUTER PROGRAMMING SERV.

P. 0. BOX 1943
ROCKY MOUNT, NORTH CAROLINA 27801

H. DAVID KEIM II

JANUARY 1980

TO PURCHASERS OF ASPTCH 2.0

Thank you for your order.

PHONE: 442-4417

Micropute Software hopes that you will find many uses for your
new copy of ASPTCH 2.0. In addition to the ASPTCH program, you
will find your program cassette contains two complimentary pro­
grams that can be used with ASPTCH 2.0. Your ASPTCH package
should contain the following:

1. One certified cassette tape with three programs: ASPTCH,
SYSTPE, and BRFAK

2. An instruction manual for ASPTCH and an appendix for
each of the two complimentary programs

3. A letter from the program author
4. A questionnaire/permit page

When using your ASPTCH program for the first time, be certain to
read through the instructions carefully and follow examples which
have been provided as instructional aids. Tapes for this program
are of high quality and usually load at about four and a half on
those computers not having the cassette modifioatign.

Any questions you may have can be answered by sending a self-ad­
dressed, pre-stamped envelope to James Williams, c/o Micropute
Software at the above address.

NOTE: Enclosed with this package is a questionnaire/permit page
which must be filled out, signed, and returned to Micropute Soft­
ware immediately. Signing the agreement portion of the question­
naire will qualify you for automatic receipt of any update news­
letters on ASPTCH and permit you to submit questions without charge
for consultation. If you send inquiries, please include as much
documentation as possible concerning your problems.

Sincerely, . /1 "7/
~A-9~/~f
H. David Keim II

TRS-80. BUSINESS PROGRAMMING• EDUCATIONAL AND HOME PROGRAMMING

January 1, 1980

DEAR FELLOW ASS™BLY LANGUAGE PROGRAMMER:

Thank you for purchasing ASPTCH 2.0. I am very proud of ASPTCH.
It is the product of 10 months of work and has evolved through
ten distinct versions. Each version has been used to create the
next one, as well as many other machine language programs.
EDTASM/ASPTCH is by far my most used program. I load it almost
every time I power up. Many TRS-80 programmers in the area used
revisions of ASPTCH as they were developed. Version 2.0 is the
sum total of their comments·, suggestions, and needs.

Loading can be one of the most frustrating problems of any pro­
gram, especially programs not made on one's own cassette player.
For example, I have found EDTASM very difficult to load. If a
program is to be used quite often, making a back-up copy on
one's own cassette recorder is imperative. For this reason,
I have included the source listing of the utility program, SYSTPE.
SYSTPE permits you to copy any number- of different areas of mem­
ory, and combine them into one system format tape. Because there
are so many- overlays, the combined tape of EDTASM and ASPTCH will
load in about the same time as EDTASM alone.

The back-up capability lends itself to abuse. The copies you
make are for your use only. If you give away or sell a copy of
EDTASM/ASPTCH, SYSTPE, or BRF..AK and/or any of the printed
instructions, you will be in flagrant and knowing violation of
the copyright law. Please tell a friend about ASPTCH, the time
spent in its preparation, the utilities, and instructions, and
ask him to purchase a copy from Micropute Scftware.

The ability to edit a source ;.isting and execute without using
tapes is a. very valuable and flexible debugging aid. I have
included a second utility, BREAK, to help you utilize this
feature to set as many break points in a program as you desire.
Simply add a call to this subroutine in your program, dump it
into memory, and execute. Your program will stop execution
when the break point is reached, and all registers and flag
conditions will be displayed. After a break, you may continue
execution or return to EDTASM.

I sincerely want ASPTCH and the utilities to be as useful to you
as possible. Please direct questions, comments, or problems to
me by writing to me c/o Micropute Software. If your tape is
defective or fails to load, please return it for another copy.
Happy assembling.

St.cereg, JJ ,
~ .-f ,v<.4\ U/ ,jju,,,...,, \

J es Fuller Williams

INSTRUCTIO:i MA:·mAL

ASPTCH 2.0

by

James Fuller Williams

Micropute Software, P.O. Box 1943, Rocky Mount, r.c. 27801

NOTICE
Reproduction or use of this manual, the
ASPTCH 2.0 program, or any other material
contained herein, without the express writ­
ten consent of Micropute Software or the
program author is hereby prohibited. No
patent liability is assumed with respect
to the use of the information contained
herein. Although every precaution has been
taken in the preparation of this program
package, the Micropute Software Co. assumes
no liability or responsibility for errors
or omissions. Neither is any liability
assumed for any damages resulting from the
use of the information contained herein.

(C) Copyright 1979, by James F. Williams

ASPTCH 2.0

I. General Information

ASPTCH 2.0 was designed forrcassette based machine language
programmers using Radio Shack's EDI'l•CR/ASSEMBLER 1.2. Without
ASPTCH, EDTASM must be reloaded after every test of a machine
language program. ASPTCH adds the following features, none of
which require reloading of EDTASM or ASPTCH:

1. Reserve memory for machine language programs.
2. Dump assembled programs directly into memory, without

using the cassette recorder.
3. Execute dumpeQ program.
4. Display number of bytes left in text buffer.
5. Convert Hex to Dec and vice-versa. Aleo show contents

of memory locations in Hex, Dec, and printable ASCII
character.

6. Enter Level II BASIC'smonitor mode (ayatem prompt}.
Allows jumps to any location in memory and loading
of system tapes.

7. Enter Level II BASIC's command mode (ready prompt}.
Use Level II commands that do not use variables (used
mainly for calculator type functions and the POKE com­
mand}.

8. Return to fully programmable BASIC with EIY.rASM/ASPTCH
and optionally dumped programs protected in high memory.
ASPTCH's key debounce routine may be re-activated while
in BASIC to prevent keybounce and speed up BASIC exe­
cution.

You may return to EDTASM/ASPTCH after using any of the
above options. EDTASM's text buffer stays intact for all but
the last option. Usually, when options are added to a program,
available memory is reduced. However, ASPTCH points EDTASM's
references to copied ROM routines back to Level II ROM. By ex­
tending low memory usage, replacing copied ROM routines with
ASPTCH cod~, and tightening up EDTASM's memory usage, the text
buffer size is actually increased if no memory is reserved.

II. Loading Procedure

1. Load EDTASM but do not initialize.
2. Load ASPTCH.
3. Initialize with/ iNTEffl.

III. ASPTCH Memory Size

Level II BASIC allows one to reserve high memory for machine

language programs (with automatic default to top of memory).
ASPTCH adds this feature to EDTASM. Answer the ASPTCH Mem­
ory Size prompt with the beginning of the area you wish to
reserve. Enter the address in Decimal or Hex (follow Hex
entries with an "H"). The very top of memory is used by the
Level II BASIC stack when the R command or reset button is
used. Minimum usage is about 30 bytes (typing SYSTEM ENTEB)
/ ~NTER)). Maximum usage depends upon the complexity \levels
of parentheses) of your BASIC command statement. 100 bytes
is sufficient for most uses. Therefore, when reserving
memory, it is safest to allow for 100 bytes at the very top
of memory in addi"tion to the area needed for machine language
dumps. However, if you remember to redump your program after
every use of the R command or reset button, you may run to
the top of memory. The following memory map should serve to
clarify:

Top of Memory r-
L

5E37H

BASIC stack builds down (30-100 bytes
usual use)

Reserved area (into which machine
language routines are dumped)

Set ASPTCH Memory Size
EDTASM symbol table builds down

EDTASM text buffer builds up

2.

t ASPTCH initialization code (replaced by
text buffer)

5CDCH

4633H

429AH

4288H

41E6H

40D1H
40C4H

C EDTASM code (with many ASPTCH overlays)

C ASPTCH code

f EDTASM/ASPTCH stack builds down
I

,r-- System stack builds down

L BASIC I/0 buffer builds up

C ASPTCH vectors (Re-entry, key debounce,
and relocater)

ROM

IV. Entry to ASPTCH Command Mode

Enter any illegal command (X for example) while in EDTASM
command mode.

V. ASPTCH Commands (Any non-command will return execution to
EDTASM command mode.)

A ASPTCH reserved area set. Reset ASPTCH memory size
(tpus reset text buffer size). Enter in Hex or Dec
the beginning of your reserved area (ENTER key only
does.!!£! default to the top of memory here).

D Dump prompt control. Flip-flops Dump prompt from
"DUMP TO CASSETTE" to "DUMP TO . MEMORY". When set
to "DUMP TO CASSETTE" machine language programs may
be saved on tape as usual. When prompt is set to
"DUMP TO MEMORY" assembled programs will be dumped
directly into the area designated by the ORG state­
ment(sl when the "READY CASSETTE" prompt is answered
with ~NTK[) •

E Execute program that was dumped directly into memory.
Execution starts at the entry point designated by the
end statement.

3.

C Convert and display contents of memory locations. Out­
put format: Hex value, Decimal value, Hex contents of
memory location, Decimal contents, and printable ASCII
character (NP if graphics or not printable).

Sub Commands:

I Input address (or value to be converted). Con­
verts value, then displays in output format on
the next line.

Jt.... Display next higher memory location (hold for
• 1 · repeat) •

. I. Display next lower memory location (hold for
\J,' repeat).

R. Ready prompt (same as R command below). Used
here for access to POKE command for memory
modification.

Any other key causes return to EDTASM command mode.

R Ready prompt (Level II PA.SIC command mode). Use BASIC
commands that do not use variables. Decimal calculator

type functions would be the most common usage (EX.
PRINT(32+27)15. 61. Return to EDTASM ~Z, typing
SYSTEM ~NTER) / iRNTEfil or SYSTRM !ENTEill /16588 (ENTEfil •

S System prompt (J,evel I I Monitor Mode). Allows jump
to any location in memor~ or load of a system tape.
Return to EDI'ASM with/ l!fNTEE) or if iou load a sys­
tem tape, answer prompt with /16588 [ENTEill.

M Memory size (sequence that leads to the Level II memory
size prompt). First you are asked to enter the be­
ginning of an area that you wish to reserve. This may
be for a program already dumped there, or for a system
tape that you intend to load after your return to BASIC.
If you do not need to reserve any extra memory, default
with (mNTEE) key only (set to top of memory).

The next prompt will be the decimal number with
which you must answer the BASIC memory size prompt

4.

when it appears. Memorize that number. Now hit any
key (use break key if expansion interface is connected).
The screen will go blank and the BASIC memory size prompt
will appear. Answer that prompt with the memorized num­
ber. Now you are in fully programmable BASIC with EDTASM/
ASPTCH and optionally, the extra area protected in high
memory.

You may re-initialize the key debounce routine by
answering the System prompt with /16585 ~1'TER) • This
will prevent key bounce and speed up BASIC execution.

You m~y return to EDTASM/ASPTCH by answering the sys­
tem prompt with /16588. The text buffer will be destroyed •.

The following two memory maps show 1) memory usage
after returning to BASIC with no memory protected, and
2) memory usage with extra memory protected:

1) Top of Memory

Decimal address
memori,Bed and
entered as answer
to BASIC's Memory
size prompt.

~ASM/ASPTCH code (only.· ·k·ey-de­Lunce usable now)

IBASIC stack builds down

40D1H

4084H

2) Top of Memory

-
ASPrCH vectors remain intact.
A jump to debounce initialization
vector initialized key debounce
and _a jump to re-entry vector moves
EDTASMJASPrCH code back to original
~ition.

-
Reserved area (for programs dumped
by ASPTCH or system programs to be
loaded later).

-

5.

Address entered
immediately after
M command

CASM/ASPl'CH code (only key debounce
1~;;ble now).

Decimal address
memorized and
entered as answer
to BASIC's memory
size prompt

40D1H

40C4H

VI. Use of the Reset Button

lBASIC stack builds down

(A.SPTCH vectors

The expansion interface forces a return to the power-up
sequence when the reset button is pressed. This wipes out
some of the ASPTCH code making reloading necessary. There­
fore, if ycu use the expansion inter~ace, you may not use
the reset button except when you are in fully programmable
BASIC with EDTASM/ASPrCH protected in high memory. When
the memory size prompt appears, you must answer with the same
decimal number you did before.

Since certain peripherals that attach directly to the
E/I edge card have varying effect on the use of the reset
button, you should consul.t the literature accompanying peri­
pheral equipment.

If you do not have the expansion interface (or turn it
off), you may use the reset button except when you are in •
EDTASM. The only time you will be tempted to use the reset
button while in EDTASM is when you are trying to load a
source tape and the machine "hangs up". You can usually get

6.

out of the hang up by taking out the cassette you are trying
to load and putting in the beginning of an ob~ect tape
(system tape}. This will usually cause a "BA PARAMETERS"
error after a few seconds. After that, however, you may
have garbage in the text buffer (try P#:*) that will not
delete with D#:*. To cure this, enter ASPTCH command mode,
use S command , then type /18058 ~NTEfil to re-initialize
EDTASM. This may sound like a lot of trouble, but is is
much better than having to reload EDTASM and ASPTCH.

After using the reset button, return to EDTASM by ans­
wering the System prompt with / ~NTEB! or /16588.

VII. EDTASM "BUFFER FULL" Error

The "BUFFER FULL" error has been replaced with a jump
to ASPTCH command mode. If you find yourseif in ASPTCH
unexpectedly, look at the "T-BUFFER BYTES LEFT" prompt.
If this reads 00000, then the text buffer is full. You may
use the ASPTCH A command to increase the text buffer size
if it is not already set to the top of memory. (The same
technique will work with the "SYMBOL TABLE OVERFLOW" error.)

VIII. Programming Procedure

1.
2.
3.

4.
5.

6.
7. .
8.

9.
10 •.

Load EDTASM and ASPTCH.
Reserve area at the top of memory.
Write or load program as usual with EDTASM.

a) ORG it so that it is contained within your
reserved area.

b) Make sure the last instruction executed will
cause a return or jump to 16588.

c) Make sure the END statement has the entry point.
Enter ASPTCH command mode.
Check Dump prompt. If it reads "DUMP TO CASSETTE",
use the D command to change it to "DUMP TO MEMORY".
Assemble as usual with EDTASM A command.
Answer the "READY CASSETTE" prompt with the enter key.
Do not turn on the cassette player •
After the* appears, the program has been dumped. Enter
ASPTCH command mode.
Answer prompt with E command.
The program will execute and return to EDTASM. You may
repeat execution as many times as desired with ASPTCH E
command.

IX. Important Addresses
:::>.

Combined load areas for EDTASM and ASPTCH:
40C4H-40D1H
429AH-5E37H

ASPTCH entry and EDTASM reset: 18058

x.

1.

2.

ASPTCH/EDTASM re-entry: 16588
Key debounce initialization: 16585
Beginning of EDTASM text buffer: 5CDCH
ASPTCH input subroutine: 4523H

Range: Hex 0000H-FFFFH
Dec 00000-65529

ASPTCH Hex output subroutine: 4599H
Range: 0000H-FFFFH

ASPTCH Dec output subroutine: 457CH
Range: 00000-65535

The three ASPTCH subroutines use the HL register pair
for ·I/0. These subroutines can be very useful for com­
municating with your machine language programs. If you

7.

need to input a value from the keyboard into your program,
simply call the input subroutine. It accepts Decimal and
Hex input and places the value in HL. If you need to dis­
play a value on the screen, put it in HL and call either the
Hex or Dec output subroutine. You should save AF, BC, and
DE for all of the subroutines.

Step by Step Example

The following example will show you how to use ASPTCH,
keystroke by keystroke. You should refer to previous general
discussions and the EDTASM manual so that you understand
exact~ what you are doing. The enter key is designated by
~EI!J.

Load EDTASM.

Load ASPTCH

Initialize.
The ASPTCH initialization prompt

will appear. Notice that the de­
fault value is set to the top of
memory.

Ready
Type

Ready
Type
Type

C11-ssette
SYSTEM (ENTEff
EDTASM ~NTEX)
Cassette
ASPTCH ~NTElli
/ (mNTE_fil

4. Reserve memory
If you have more than 16K,

this will be a gross waste of
memory, but the purpose of this
example will still be served.

Type 7EO0H iNT:Effl

The prompt will show (top of mem­
ory-7E00H) in Dec.

5. Continue
You are now in EDTASM com­

mand mode. This is designated
by the* prompt.

Hit any key

?.
a.

9.
10.
11.
12.

13.
14.
15.

16.

1 ? • .

18.
19.

20.

Enter program.
T:b.!t.s short program

prints a "Z" on the screen
at location 3EOOH.

Enter ASPTCH command mode.
Change Dump prompt from "DUMP
TO CASSETTE" to "DUMP TO
MEMORY". Notice that ASPTCH
commands do not require the
enter key.
Assemble program
Dump·it into memory
Enter ASPTCH command mode
Execute the program.

Notice that the program
prints a "Z" on the screen,
then returns to EDTASM.
Nert we will demonstrate
the use of the C command.
Enter ASPTCH command mode.
Enter C sub-command mode.
Input sub-command.

Notice the ➔. This
indicates that ASPTCH's input
subroutine is expecting input.
Input may be in Hex or Dec.
Input start of memory exami­
nation area.

Conversion takes place on
the same line as entry. The
next line is in the output format.
(see C command).
Examine next few memory locations.

This is the object code of
our program. For demonstration
purposes, we will modify it di­
rectly in memory. See the cha­
racter "Z" in location 7E04H?
We will change it to a "Y"
(ASCII 89).
Enter Level II BASIC command mode.
Change location with POKE command.

Notice that we must use de­
cimal numbers for the BASIC POKE
command. That is why the decimal
conversions are there for you.
Return to EDTASM

a.

Type I iNT@I
'7 ORG ➔7EOOH

EntlLD ~, 3EOOH
LD~(HLJ,'Z'
RET ENTJml
END➔ENTRY

(BREAK)

Type X ffi;NTEB)
Type D

Type A ~NTJ®
Hit ~NTF&)
Type X (filNT~
Type E

Type X ~NTEB)
Type C
Type I

Type 7EOOH (mNTzjH

Hold down 1' until about

iNTElil

m:I
~NTE_ill

6 locations are displayed.

Type R
Type POKE 32260,89 !ENT]@

Type SYSTEM ~NTEB)
/ ~NTERT

21. Enter ASPTCH command mode
22. Execute program.

Notice a "Y" was print ed
rather than a "Z". Our source
code in the text buffer still
bas a "Z". We will re-dump it
and execute.

23. Assemble.
24. Dump.
25. Enter ASPTCH command mode.
26. Execute and return to EDTASM.

Notice that the "Z" was
printed again. When we re­
assembled and dumped, we over­
wrote the whole program,
including the character we
modified.

Next we will save EDTASM/
ASPTCH and our program and
return to fully programmable
BASIC. We can then execute the
program from BASIC with the USR
command. However, without the
expansion interface, we have to
convert the two halves of the
entry address into decimal so we
can POKE them into the USR lo­
cations (see Level II manual).
?EOOH breaks down into ?EH and
OOH. The OOH conversion is not
much of a problem, but we will
use the C command to convert ?EH.

27. Enter ASPTCH command mode.
28. Enter C sub-command mode.
29. Input value to be converted.

Memorize or write down
decimal equivalent. Ignore
the rest of the display. We are
not interested in the contents
of location ?EH.

30. Leave C sub-command mode.

31. Enter ASPTCH command mode.
32. Enter return to BASIC sequence.
33. Enter beginning of reserved area.

Memorize the given decimal
number.

34. Back to BASIC.

Type X
Type E

Type
Hit
Type
Type

Type
Type
Type

A 1,NTEB)
~NT
X NTEfil
E

X ~NTE[)
C
I
?EH ~NTE]I

9.

Hit any key other than I,
1', f , or R.
Type X IBNTEfil
Type M
Type ?EOOH ~NTEE!

Hit any key (use break
key if expansion interface
is on)

35. Protect high memory.
Now we are in fully

programmable BASIC. At
this point we can load and
execute basic programs (or
system programs if they do
not interfere with the
protected area).

36. Re-initialize key debounce.

37. Enter BASIC test program.

38. Execute.
Notice that the "Z" was

printed, indicating that
the program is intact.

39. Return to EDTASM.
Notice the BASIC program

and the text buffer of EDTASM
have been destroyed, but the
machine language program is
still intact.

40. Enter ASPTCH command mode.
41. Execute.

Program is still there.
Remember to save source listings
and BASIC programs on tape when
going back and forth between
E:IY.rASM and fully programmable
BASIC. In fact, it is wise to
make periodic source tapes while
debugging, in case of a system
crash.

Type

rcype

Type

Type

Type

Type
Type

10.

25533 ~NT:@)

SYSTEM i' MTE,,
/16585 F.NT • ·
10 CLS:P0 E 1 52&t-0:
PCKR 16527, 126 1£!.NT:m)
20 X7~=USR(X%) ffijNTESi
RUN lfilNT~

SYSTEM iNTt~Fii)
/165ffi ~: ... ~

SYSTPE
Copyright (C) 1979

by
James Fuller Williams

A 1.0

SYSTPE is a source tape that when loaded into EDTASM/
ASPTCH 2.0, assembled, dumped, and executed will allow you
to copy any number of distinct memory areas and combine them
into one System format tape. It also allows you to cause
your program to execute immediately after loading, (without
keyboard initialization) if desired.

Loading

SYSTPE must be loaded into EDTASM/ASPTCH 2.0

ORGING

1. Load EDTASM
2. Load ASPTCH
3. Initialize
4. Reserve memory. (SYSTPE is originally set to

7EOOH, but this can be changed if desired.)
5. Load SYSTPE (use EDTASM "L" command)

SYSTPE is set for loading near the top of 16K. However,
if you have more than 16K, or 7EOOH is not a convenient place
for SYSTPE, then simply change the ORG statement to an address
that suits your needs.

Making a System tape of SYSTPE
If you desire, you may make a system tape of SYSTPE

for separate loading by assembling and dumping on tape as usual.
However, the first half of SYSTPE uses ASPTCH routines, so EDTASM/
ASPTCH must be in memory (in their original position) for the
initialization part of SYSTPE to work.

Dump to Memory
Set ASPTCH Dump prompt to "DUMP TO MEMORY", assemble program

and dump.

Execution
Execute with ASPTCH E command, or a SYSTEM command jump to

entry point.

File name
Enter up to 6 letters for the file name with which you wish

this system tape to load.

Immediate Execution
Sometimes it is desirable for programs to execute immediately

A 1.1

after loading, without manual initialization(typing / ~T:Effi).
(For example, if you had a fancy display that was loaded
directly from tape, the prompt could mess it up.) SYSTPE allows
you to utilize this function. Simply include as one of your
memory areas to be copied, 41E2H-41E4H. This will create one
problem: the BASIC 'SYST™' command will cause an immediate
jump to your entry point every time you try to use it. To fix
it from BASIC, type POKE16866,201 ~NTFIB), or better yet, have
your machine language program fix it first thing (LD HL, 41E2H
LD (HL),201).

Number of ORGS
SYSTPE asks for the number of distinct memory areas you wish

to copy. (For example, if you wanted to copy the screen (3COOH-
3FFFH) and 6000H-7000H, you would answer 2. If you wanted to
have immediate execution, you would answer 3.)

Start Address-End Address
SYSTPE now will loop for n times, asking for the start

address then the end address for each area you wish to copy.
(n=number of ORGS). Answer in Hex or Dec.

Entry Address
After the last End Address is entered, SYSTPE asks for the

Entry Address. Enter the entry point in Hex and Dec.

Re-entry
SYSTPE now gives the re-entry address and goes into Level II

BASIC monitor mode (System prompt). The programs or data you wish
xo copy do not even have to be in memory yet. If they are in
memory, you may proceed directly to making the tape. If not,
return to EDTASM with / lliNTEfil • From ASPTCH you can dump your
data or programs, or move EDTASM/ASPTCH and return to BASIC. If
you go back to BASIC, be sure to protect memory starting at the
re-entry point or less.

Making the Tape
After the data or programs are loaded into memory, you must

ready the cassette recorder for recording and jump to the re-entry
point. The easiest wav to do this is answer the System prompt
with/ re-entry point. You can also use the BASIC USR command
if you wish. You may repeat the jump to re-entry as many times
as desired for as many copies as desired.

Step-by-Step Example
The following is a keystroke by keystroke example of how to

use SYSTPE to make a copy of EDTASM and ASPTCH for a single load­
ing. If you wish to use the program for something other than
this, it is important that you try to understand exactly why and
what you are doing.

1. Load EDTASM

2. Load -ASPTCH

3. Initialize
4. Reserve memory
5. Continue
6. Load SYSTPE

7. Enter ASPTCH command mode
8. Change prompt to "DUMP TO MEMORY"
9. Assemble

10. Dump
11. Enter ASPTCH command mode
12. Execute
13. Answer File Name prompt
14. Answer ORGS prompt
15. Answer Start Address prompt
16. Answer End Address prompt
17. Answer Start Address prompt
18. Answer End Address prompt
19. Answer Entry prompt

Now initialization is complete.
We must re-load ASPTCH because the

A 1.2

Ready cassette
Type SYSTEM liNT~

EJJrASM ~NTE]I
Ready cassette
Type ASPTCH iNT~
Type / ~NT
Type 7EOOH l!NTEE
Hit any key
Ready cassette
Type L iNTI

tENT
Type X '1NTE
Type D
Type A (filNTE]}
Hit ENTER
Type X ~NT:®
Type E
Type EDTASM ~T@
Type 2 ENTER

Type 40C4H rfiT Type 40D1H
Type 429AH
Type 5E37H
Type 18058

text buffer destroys the initializatior:

20. -

21.

code. EDTASM is alright.
Load ASPTCH

After loading, we do not
initialize ASPTCH. We wari-tto
copy memory exactly as it is now,
before initialization.
Make Tape

Tape recorder will turn on
and make a tape of combined
EJJrASM/ASPTCH 2.0. It will load
under file name ElJrASM. To make
more copies, repeat step 21.

Ready cassette
Type ASPTCH

Ready cassette
Type /32370

jfilITFE}

(§:NTEE)

BREAK
Copyright (C) 1979

by
James Fuller Williams

A 2.0

BREAK is a source tape, for use with EDTASM/ASPTCH 2.0.
After dumping it into memory, it can be called by a program
being debugged to stop execution and display flag conditions
(a binary representation of flag registers) and register con­
tents in Hex. After a break, you have the option of continuing
execution or returning to EDTASM. If execution is continued,
all registers are reset with their original contents.

Setting and removing break points is simply a matter of
adding or deleting lines that contain a call to the entry
address of the BREAK subroutine. After break points are added
or deleted from a program being debugged, it is assembled,
dumped and executed. All of this can be done very easily with
ASPTCH.

Be sure to give some consideration where to ORG and dump
the BREAK . subroutine • It must be in the reserved area and it
must not conflict with the program you are debugging. Also
remember to keep the end of the BREAK subroutine at least 100
bytes from the top of memory so that the ASPTCH R command will
not wipe it out.

If you use this program often, .you will want to add it as a
3rd ORG to your combined EDTASM/ASPTCH tape (see instructions
below). It would then load automatically every time you loaded
EDTASM/ASPTCH.

The following is a step-by-step example of how to use BREAK.
For demonstration we will use the SYSTPF. program.

1. Load EDTASM and ASPTCH and initialize.
2. Reserve memory at 7DOOH
3. Load the BREAK program with EDT.ASM's "L" command.
4. Change BREAK's ORG statement to ?DOOR

We will load BREAK beneath SYSTPE.
5. Enter ASPTCH command mode and set the Dump prompt to

"DUMP TO MEMORY" with the D command.
6. Assemble and dump BREAK into memory.
7. Delete EDTASM's text buffer (D#:*)
8. Load SYSTPE program with F.JYrASM' s "L" command.
9. Now choose any spot in the program and insert the line

CALL 7DOOH.
10. Assemble and dump it into memory.
11. Execute with ASPTCH E command.

A 2.1

The program will execute as usual until the break point
is reached. At that point, flags and registers are displayed,
and a prompt asks what you want to do next. If you hit c,
execution will continue from that point. If you set your
break point in a loop in the program, it will break every
time it is encountered. If you hit E, you will return to
EMASM.

12. Return to EDTASM and add another break point and remove the
old one, if desired. You may rave as many break points in
a program as you wish. Use the EDTASM "F" command to help
you find break points. Go back to step 10.

How to make BREAK load automatically with EDTASM/ASPTCH 2.0.

If you combine BREAK with EDTASM/ASPTCH, it will add only a
second or so to the total loading time. It can be ignored and
written over if not needed. If you plan to use it, all you need
to do is rememberwherwyou put it, reserve enough memory for it
and the program with which you will be working and be careful
that your expanding program does not "eat" BREAK. The original
ORG for BREAK is 7EBOH. This puts the end of it about 100 bytes
from the top of 16K. If you have more than 16K, you should put
it in the same relationship to the top of memory. (BEBOH for
32K and FEBOH for 48K).

1.
2.
3.
4.

5.

6.

7.
a.
9.

Load EDTASM/ASPTCH and initialize. -
Reserve memory (?DOOH will work).
Load BREAK with the EDTASM "L" command.
Enter ASPTCH command mode and change Dump prompt to
"DUMP TO MEMORY".
Change ORG statement if you have more than 16K (see
suggested ORG's above).
Determine the Start and End points of BREAK
a. Assemble with EDTASM command A/NS
b. Make a note of the location of the last byte in

the assembly (DEFB o).
c. The Start address (Entry point) is to the left of the

END statement. Write it down.
Dump it into memory hit ENT:ER.
Delete the text buffer (D#:*) and load SYSTPE.
If you have 16K, SYSTPE will conflict with our dumped
BREAK. Therefore change the ORG statement to ?DOOH.
(If you have more·than 16K, you should have dumped the
BREAK subroutine at a far higher ORG, eliminating the
conflict over the same memory area, thus making this ORG
change unnecessary.)

10. Assemble, dump and execute.
10a •• Answer filename prompt with EDTASM

11. Answer the SYSTP~~ NIDLEER OR ORGS prompt with 3.
12. Answer the 3 sets of START-END ADDRESS prompts with:

40C4H
40D1H
429AH
5E37H
BREAK Start address
BREAK End address

13. Answer ENTRY ADDRESS with 18058.
14. Make a note of the re-entry address.
15. Load ASPTCH, but do not initialize.
16. Ready the Cassette player for recording.
17. Jump to the re-entry address (answer System prompt with

/re-entry address). Repeat step 17 for as many copies as
desired.

A 2.2

	Binder1_Page_01
	Binder1_Page_02
	Binder1_Page_03
	Binder1_Page_04
	Binder1_Page_05
	Binder1_Page_06
	Binder1_Page_07
	Binder1_Page_08
	Binder1_Page_09
	Binder1_Page_10
	Binder1_Page_11
	Binder1_Page_12
	Binder1_Page_13
	Binder1_Page_14
	Binder1_Page_15
	Binder1_Page_16
	Binder1_Page_17
	Binder1_Page_18
	Binder1_Page_19
	Binder1_Page_20

